Proton transfer pathways and mechanism in bacterial reaction centers.
نویسندگان
چکیده
The focus of this minireview is to discuss the state of knowledge of the pathways and rates of proton transfer in the bacterial reaction center (RC) from Rhodobacter sphaeroides. Protons involved in the light driven catalytic reduction of a quinone molecule QB to quinol QBH2 travel from the aqueous solution through well defined proton transfer pathways to the oxygen atoms of the quinone. Three main topics are discussed: (1) the pathways for proton transfer involving the residues: His-H126, His-H128, Asp-L210, Asp-M17, Asp-L213, Ser-L223 and Glu-L212, which were determined by a variety of methods including the use of proton uptake inhibiting metal ions (e.g. Zn2+ and Cd2+); (2) the rate constants for proton transfer, obtained from a 'chemical rescue' study was determined to be 2 x 10(5) s(-1) and 2 x 10(4) s(-1) for the proton uptake to Glu-L212 and QB-*, respectively; (3) structural studies of altered proton transfer pathways in revertant RCs that lack the key amino acid Asp-L213 show a series of structural changes that propagate toward L213 potentially allowing Glu-H173 to participate in the proton transfer processes.
منابع مشابه
Proton and electron transfer in bacterial reaction centers.
The bacterial reaction center couples light-induced electron transfer to proton pumping across the membrane by reactions of a quinone molecule Q(B) that binds two electrons and two protons at the active site. This article reviews recent experimental work on the mechanism of the proton-coupled electron transfer and the pathways for proton transfer to the Q(B) site. The mechanism of the first ele...
متن کاملX-Ray structure determination of three mutants of the bacterial photosynthetic reaction centers from Rb. sphaeroides; altered proton transfer pathways.
In the photosynthetic reaction center (RC) from Rhodobacter sphaeroides, the reduction of a bound quinone molecule Q(B) is coupled with proton uptake. When Asp-L213 is replaced by Asn, proton transfer is inhibited. Proton transfer was restored by two second-site revertant mutations, Arg-M233-->Cys and Arg-H177-->His. Kinetic effects of Cd(2+) on proton transfer showed that the entry point in re...
متن کاملQuantum-chemical modeling of the stacking mechanism for the 1H-4H proton transfer in pyridine derivatives. A DFT study
The stacking mechanism of the 1H-4H proton transfer in 4-pyridone, 4-pyridinthione and p-aminopyridineare constructed. For quantitative description of this process by means of the quamtumchemicalmethod density functional theory (DFT) the activation energy (
متن کاملMechanism of proton transfer inhibition by Cd(2+) binding to bacterial reaction centers: determination of the pK(A) of functionally important histidine residues.
The bacterial photosynthetic reaction center (RC) uses light energy to catalyze the reduction of a bound quinone molecule Q(B) to quinol Q(B)H(2). In RCs from Rhodobacter sphaeroides the protons involved in this process come from the cytoplasm and travel through pathways that involve His-H126 and His-H128 located near the proton entry point. In this study, we measured the pH dependence from 4.5...
متن کاملIdentification of the proton pathway in bacterial reaction centers: Replacement of Asp-M17 and Asp-L210 with Asn reduces the proton transfer rate in the presence of Cd21
The reaction center (RC) from Rhodobacter sphaeroides converts light into chemical energy through the reduction and protonation of a bound quinone molecule QB (the secondary quinone electron acceptor). We investigated the proton transfer pathway by measuring the proton-coupled electron transfer, kAB [QA.QB. 1 H13 QA(QBH)] in native and mutant RCs in the absence and presence of Cd21. Previous wo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEBS letters
دوره 555 1 شماره
صفحات -
تاریخ انتشار 2003